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Abstract
Within the quantum affine algebra representation theory, we construct linear
covariant operators that generate the Askey–Wilson algebra. It has the property
of a coideal subalgebra, which can be interpreted as the boundary symmetry
algebra of a model with quantum affine symmetry in the bulk. The generators
of the Askey–Wilson algebra are implemented to construct an operator-valued
K-matrix, a solution of a spectral-dependent reflection equation. We consider
the open driven diffusive system where the Askey–Wilson algebra arises as a
boundary symmetry and can be used for an exact solution of the model in the
stationary state. We discuss the possibility of a solution beyond the stationary
state on the basis of the proposed relation of the Askey–Wilson algebra to the
reflection equation.

PACS numbers: 02.30.Ik, 11.30.Na, 05.50.+k, 05.70.Ln

1. Introduction

Quantum affine symmetries [1–5] are intensively developed as rich mathematical structures
linking various branches of mathematical physics, such as topological quantum field theories,
integrable lattice models of statistical physics, rational conformal theories. They are
implemented with the ultimate goal to understand and explore the consequences of the
symmetries for a description of physical systems.

Our work concerns the application of quantum symmetries for the exact solvability of
many particle lattice systems interacting with stochastic dynamics.

The main idea of integrability of lattice systems (within the inverse scattering method
[6]) is the existence of a family of commuting transfer matrices, depending on a spectral
parameter. For quantum spin chains, the transfer matrices give rise to infinitely many mutually
commuting conservation laws. This is the Abelian symmetry of the system. The infinitely
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many commuting conserved charges can be diagonalized simultaneously and their common
eigenspace is finite dimensional in most cases. Thus, the Abelian symmetry reduces the
degeneracies of the spectrum from infinite to finite which is the reason for integrability.
In addition, many systems possess non-Abelian symmetries. They determine the R-matrix
operator, a solution of the Yang–Baxter equation, up to an overall scalar factor and are identified
as the quantum bulk symmetries. In the presence of general boundaries, the quantum symmetry
and the integrability of the model as well are broken. However with suitably chosen boundary
conditions [7, 8] a remnant of the bulk symmetry may survive and the system possesses hidden
boundary symmetries, which determine a K-matrix, a solution of a boundary Yang–Baxter
equation and allow for the exact solvability. Such nonlocal boundary symmetry charges
were originally obtained for the sine Gordon model [9] and generalized to affine Toda field
theories [10], and derived from spin chain point of view as commuting with the transfer matrix
for a special choice of the boundary conditions [11] or analogously as the one boundary
Temperley–Lieb algebra centralizer in the ‘nondiagonal’ spin-1/2 representation [12].

In this paper we consider an algebraic prescription to construct two operators, possessing
a coideal property with respect to the quantum affine Uq(ŝl(2)). We show that these operators
generate an Askey–Wilson algebra which thus turns to be a coideal subalgebra of the quantum
affine Uq(ŝl(2)). We argue that one can construct a K-matrix in terms of the Askey–Wilson
algebra generators, which satisfies a boundary Yang–Baxter equation (known as a reflection
equation). As an example of an Askey–Wilson boundary symmetry we consider a model of
nonequilibrium physics, the open asymmetric exclusion process with most general boundary
conditions. This model is exactly solvable in the stationary state within the matrix product
ansatz to stochastic dynamics, and it can be shown that the boundary operators generate the
Askey–Wilson algebra. The model is equivalent to the integrable spin-1/2 XXZ chain with
most general boundary terms, whose bulk Hamiltonian (infinite chain) possesses the quantum
affine symmetry Uq(ŝl(2)).

2. The quantum affine Uq(ŝl(2))

In this section, we recall the definition of the affine Uq(ŝl(2)) [2, 3, 13]. We fix a real number
0 < q < 1 (in the general case, q is complex) and we use the q-symbol in the form

[x] = qx/2 − q−x/2

q1/2 − q−1/2
≡ [x]q1/2 . (1)

The quantum affine Uq(ŝl(2)) is defined as the associative algebra with a unit with generators
E±

i and qHi , i = 0, 1, in the Chevalley basis and defining relations

qHi q−Hi = q−Hi qHi = 1

qH0qH1 = qH0+H1 = qc
(2)

qHi E±
i q−Hi = q±1E±

i

qHi E±
j q−Hi = q∓1E±

j[
E+

i , E−
j

] = δij

qHi − q−Hi

q1/2 − q−1/2

(3)

together with the q-Serre relations(
E±

i

)3
E±

j − [3]
(
E±

i

)2
E±

j E±
i + [3]E±

i E±
j

(
E±

i

)2 − E±
j

(
E±

i

)3 = 0, i �= j, (4)
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where [3] = 1 + q + q−1. The element c = H0 + H1 is central and its value is the level of
the affine Uq( ˆsl2). The algebra is endowed with the structure of a Hopf algebra. Namely, the
coproduct �, the counit ε and the antipod S are defined as

�
(
E+

i

) = E+
i ⊗ q−Hi/2 + qHi/2 ⊗ E+

i

�(E−
i ) = E−

i ⊗ q−Hi/2 + qHi/2 ⊗ E−
i

�(Hi) = Hi ⊗ I + I ⊗ Hi

(5)

ε
(
E+

i

) = ε(E−
i ) = ε(Hi) = 0, ε(I ) = 1 (6)

S
(
E±

i

) = −q∓1/2E±
i , S(Hi) = −Hi, S(I ) = 1. (7)

Let α0 denote the longest root and ρ is 1/2 the sum of positive roots. We consider the Uq(ŝl(2))

algebra with a scaling element d, defined by (d, α0) = 1 ((, ) is the nondegenerate bilinear
form on the Cartan subalgebra) and denote h = (α0, α0) + 2(ρ, α0). With a finite-dimensional
representation πV of Uq(ŝl(2)), one associates the quantum R-matrix RV V (λ) which acts in
V ⊗ V and satisfies the Yang–Baxter equation. One also has [d ⊗ d,R] = 0. The universal
R-matrix R(λ) is uniquely defined [14] by the first terms in its expansion in powers of the
Chevalley generators of Uq(ŝl(2)):

R = qc⊗d+d⊗c+
∑1

i=0 Hi⊗Hi

(
1 ⊗ 1 + (q1/2 − q−1/2)

1∑
i=0

qHi/2E+
i ⊗ q−Hi/2E−

i + · · ·
)

. (8)

One can define an automorphism Tλ:

TλHi = Hi, TλE
±
i = λ±1E±

i , i = 0, 1, (9)

and put R(λ) = (T (λ) ⊗ id)R. For a fixed finite-dimensional representation (π, V ) of the
quotient algebra Uq(ŝl(2)), obtained by setting c = 0, one has RV V (λ) = (π ⊗ π)R(λ).
Following [14], one introduces the currents L±(λ) ∈ EndV ⊗ Uq(ŝl(2)), given by
L+ = (id ⊗ πV )(R), L− = (id ⊗ πV )(Rt ), which are explicitly expressed in terms of the
Chevalley generators of Uq(ŝl(2)). The operators L±(λ) generate a Hopf algebra A(R) and
their matrix coefficients generate an algebra A0(R) ⊂ A(R). Let L(λ) denote the quantum
current

L(λ) = L+(λq)(L−(λ)−1 (10)

with a finite Laurent series expansion

L(λ) =
∑

n

lV (n)λ−n−2, n ∈ Z. (11)

A theorem (by Reshetikhin and Semenov–Tian–Shansky [14]) states that the element
t (λ) = trq(L(λ)) lies in the centre of the quotient algebra of A(R), obtained by setting
c = −h. Hence from the explicit expressions of the currents L± in terms of the Chevalley
generators follows that t (λ) is the generating function of the Casimir elements of the quotient
algebra of Uq(ŝl(2)), obtained by setting c = −h.

For our purposes we will need a slightly different realization of the algebra in terms of
the Chevalley generators and following [15] we define a new basis in Uq(ŝl(2)) generated by
Hi,Q

s
i , Q̄

s
i :

Qs
i = (q1/2 − q−1/2)E+

i q−Hi/2 + q−Hi , Q̄s
i = −(q1/2 − q−1/2)E−

i q−Hi/2 + q−Hi . (12)

Let now u, u∗, v, v∗ be some (complex) scalars. We denote

U = uQs
0, U ∗ = u∗Qs

1, V = vQ̄s
0, V ∗ = v∗Q̄s

1. (13)
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Then we have

q1/2V U − q−1/2UV = (q1/2 − q−1/2)vu (14)

q1/2UV ∗ − q−1/2V ∗U = (q1/2 − q−1/2)uv∗q−c (15)

q1/2V ∗U ∗ − q−1/2U ∗V ∗ = (q1/2 − q−1/2)v∗u∗ (16)

q1/2U ∗V − q−1/2V U ∗ = (q1/2 − q−1/2)u∗vq−c. (17)

The operators U,U ∗, V , V ∗ satisfy the following q-Serre relations which are the direct
consequence of (4):

U 3U ∗ − [3]U 2U ∗U + [3]UU ∗U 2 + U ∗U 3 = 0 (18)

U ∗3U − [3]U ∗2UU ∗ + [3]U ∗UU ∗2 + UU ∗3 = 0 (19)

V 3V ∗ − [3]V 2V ∗V + [3]V V ∗V 2 + V ∗V 3 = 0 (20)

V ∗3V − [3]V ∗2V V ∗ + [3]V ∗V V ∗2 + V V ∗3 = 0. (21)

We can now consider the linear combinations

A = U + V, A∗ = U ∗ + V ∗. (22)

It can be verified directly by using the q-commutation relations (14)–(17) between the operators
U,V,U ∗, V ∗ and the q-Serre relations (18)–(21) that the operators A,A∗ satisfy the following
relations which are the defining relations of a tridiagonal Askey–Wilson (AW) algebra:

A3A∗ − [3]qA
2A∗A + [3]qAA∗A2 + A∗A3 = −uv(q − q−1)2[A,A∗]

A∗3A − [3]qA
∗2AA∗ + [3]qA

∗AA∗2 + AA∗3 = −u∗v∗(q − q−1)2[A∗, A],
(23)

where [3]q = q + q−1 + 1 and [X, Y ] = XY − YX. In the following section, we are going
to consider a general realization of the Askey–Wilson algebra as a coideal subalgebra of the
quantum affine Uq(ŝl(2)).

3. The tridiagonal Askey–Wilson algebra

We begin this section with some definitions [16, 17]. Let V be a vector space with (in)finite
positive dimension. A tridiagonal pair on V is an ordered pair A,A∗ where A : V → V

and A∗ : V → V are linear transformations that satisfy the following conditions: (1) there
exists a basis for V with respect to which the matrix representing A is diagonal and the matrix
representing A∗ is irreducible tridiagonal, (2) there exists a basis for V with respect to which
the matrix representing A∗ is diagonal and the matrix representing A is irreducible tridiagonal.
(A tridiagonal matrix is irreducible whenever all entries on the superdiagonal and subdiagonal
are nonzero.) A tridiagonal pair A,A∗ on V is a Leonard pair if for each A,A∗ all eigenspaces
are of dimension 1.

Definition 1. For a Leonard pair A,A∗ on V there exists a sequence of scalars β, γ, γ ∗,
ρ, ρ∗, ω, η, η∗, such that

−βAA∗A + A2A∗ + A∗A2 − γ {A,A∗} − ρA∗ = γ ∗A2 + ωA + η

−βA∗AA∗ + A2∗A + AA2∗ − γ ∗{A,A∗} − ρ∗A = γA∗2 + ωA∗ + η∗,
(24)

which is uniquely determined by the pair. Equations (24) are called the Askey–Wilson relations.
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Definition 2. For a tridiagonal pair A,A∗ on V there exists a sequence of scalars β, γ, γ ∗,
ρ, ρ∗, such that

[A,−βAA∗A + A2A∗ + A∗A2 − γ {A,A∗} − ρA∗] = 0

[A∗,−βA∗AA∗ + A2∗A + AA2∗ − γ ∗{A,A∗} − ρ∗A] = 0,
(25)

which is uniquely determined by the pair. It has been proved [18] for a Leonard pair that the
two definitions are equivalent.

Definition 3. A tridiagonal algebra is an associative algebra with a unit generated by the pair
A,A∗ subject to relations (24), respectively (25).

Affine transformations

A → tA + c′, A∗ → t∗A∗ + c∗, (26)

where t, t∗, c′, c∗ are some scalars, act on the operators A,A∗ of the Askey–Wilson relations
and can be used to bring a tridiagonal pair in a reduced form with γ = γ ∗ = 0. (The label
c′ is used to avoid confusion with the Uq(ŝl(2)) central element.) Examples are the q-Serre
relations with β = q + q−1 and γ = γ ∗ = ρ = ρ∗ = 0 and the Dolan–Grady relations [19]
with β = 2, γ = γ ∗ = 0, ρ = k2, ρ∗ = k∗2:

[A, [A, [A,A∗]]] = k2[A,A∗] [A∗, [A∗, [A∗, A]]] = k∗2[A∗, A]. (27)

The algebra (24) was first considered by Zhedanov [20] who showed that the Askey–
Wilson (AW) polynomials gave rise to two infinite-dimensional matrices satisfying the
AW relations. The tridiagonal relations have recently been discussed in a more general
framework [16, 17, 21], where tridiagonal pairs have been classified according to their
dependence on the sequence of scalars [16, 17] and a correspondence to the orthogonal
polynomials in the Askey–Wilson scheme was given. In [21] the AW algebra (24) with
γ = γ ∗ = 0 has been equivalently described as an algebra with two generators and with
structure constants determined in terms of the elementary symmetric polynomials in four
parameters a, b, c, d, abcd �= qm,m = 0, 1, 2 . . . ; q �= 0, qk �= 1, k = 1, 2, . . . .

We can now formulate the following statement which defines a homomorphism of the
AW algebra to the quantized affine algebra Uq(ŝl(2)).

Proposition 1. Let u, u∗, v, v∗, k, k∗ be some scalars. The operators A,A∗ defined by

A = uE+
0 q−H0/2 + vE−

0 q−H0/2 + kq−H0

A∗ = u∗E+
1 q−H1/2 + v∗E−

1 q−H1/2 + k∗q−H1
(28)

(it is assumed that E±
i in (28) are rescaled by ±(q1/2 − q−1/2) according to (12)) and their

q-commutator

[A,A∗]q = q1/2AA∗ − q−1/2A∗A (29)

form a closed linear algebra, the Askey–Wilson algebra:

[[A,A∗]q, A]q = −ρA∗ − ωA − η

[A∗, [A,A∗]q]q = −ρ∗A − ωA∗ − η∗,
(30)

where the (representation dependent) structure constants are given by

−ρ = uv(q − q−1)2, −ρ∗ = u∗v∗(q − q−1)2 (31)

−ω = −(q1/2 − q−1/2)2
(
kk∗ + l0

V (uu∗q1/2 + v∗vq−1/2)
)

(32)

5
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−η = (q − q−1)(q1/2 − q−1/2)
(−k(uu∗q1/2 + v∗vq−1/2) − l0

V uvk∗) (33)

−η∗ = (q − q−1)(q1/2 − q−1/2)
(−k∗(uu∗q1/2 + v∗vq−1/2) − l0

V u∗v∗k
)
. (34)

The element l0
V is the coefficient lV (n) to λ−n−2, for n = 0, in the Laurent series (11) of the

quantum current for any highest weight module over Uq(ŝl(2)) and is central (the quadratic
Casimir element) in the quotient algebra of Uq(ŝl(2)), obtained by setting c = −h (with
h = 1). On a highest weight irreducible representation V l0

V is a scalar.
We note that equation (28) defines the homomorphism of the AW algebra to the affine

algebra Uq(ŝl(2)). For k = u + v, k∗ = u∗ + v∗, one recovers the particular case (22).
Special cases of this homomorphism are the representation considered by Terwilliger [16]
with ρ = ρ∗ = 0 and the one by Baseilhac and Koizumi [22] with u = v∗ and v = u∗ in (28).
Making use of the evaluation representation for the Uq(ŝl(2)) generators in (28)

πν

(
E±

1

) = E±, πν

(
E±

0

) = ν±1E∓, πν(q
H1) = qH , πν(q

H0) = q−H , (35)

where E±,H are the Uq(sl(2)) generators, we obtain the Granovskii and Zhedanov realization
[23].

The algebraic relations (23) and (30) are the two equivalent defining relations of the
AW algebra with two generators. The homomorphism (28) defines the AW algebra with
two generators as the linear covariance algebra for Uq(ŝl(2)) with operator-valued structure
constants.

Definition 4. The AW algebra with two generators A,A∗ defined by the homomorphism (28)
is a deformation in two parameters ρ, ρ∗ of the q-Serre relations of level zero quantum affine
Uq(ŝl(2)), such that it results in a shift of the central charge to a non zero value c = −1.

Taking the limit q → 1 in the defining relations (23), one obtains a two-parameter
deformation of the Serre relations of level zero affine sl(2), known as the Dolan–Grady
relations.

From the explicit realization of the operators A,A∗ follows that they generate a linear
covariance algebra for Uq(ŝl(2)), which has the property of a coideal subalgebra. Let Bq(ŝl(2))

denote the algebra generated by A,A∗.

Proposition 2. The Askey–Wilson algebra defined by the homomorphism (28) is a coideal
subalgebra of Uq(ŝl(2)). The proof is straightforward by using the comultiplication (5). One
has

�(A) = I ⊗ A + (A − kI) ⊗ q−H0 �(A∗) = I ⊗ A∗ + (A∗ − k∗I ) ⊗ q−H1 , (36)

where the expressions on the RHS of (36) obviously belong to Bq(ŝl(2)) ⊗ Uq(ŝl(2)).

4. Representations of the Askey–Wilson algebra

The Askey–Wilson algebra is known to possess very important properties which allow to obtain
its ladder representations. We briefly sketch these properties (for details, see [16, 20, 21]).
Namely, there is a representation with basis fr with respect to which the operator A is diagonal:

Afr = λrfr , (37)

where the eigenvalues satisfy a quadratic equation

λ2
r + λ2

s − (q + q−1)λrλs − ρ = 0 (38)

6
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(which yields two different eigenvalues λr+1 and λr−1 for a fixed eigenvalue λr ) and the
operator A∗ is tridiagonal:

A∗fr = ar+1fr+1 + brfr + cr−1fr−1. (39)

Depending on the sign of ρ, the spectrum of the diagonal operator is hyperbolic of the form sh

or ch and exp if ρ = 0. The algebra possesses a duality property. Due to the duality property,
the dual basis exists with respect to which the operator A∗ is diagonal and the operator A is
tridiagonal. We have

A∗f ∗
p = λ∗

pf ∗
p Af ∗

s = a∗
s+1f

∗
s+1 + b∗

s f
∗
s + c∗

s−1f
∗
s−1, (40)

where λ∗
p satisfies the quadratic equation (38) with −ρ replaced by −ρ∗. The overlap function

of the two basis 〈s|r〉 = 〈f ∗
s |fr〉 can be expressed in terms of the Askey–Wilson polynomials.

Let pn = pn(x; a, b, c, d) denote the nth Askey–Wilson polynomial [24] depending on four
parameters a, b, c, d:

pn(x; a, b, c, d) =4 
3

(
q−n, abcdqn−1, ay, ay−1

ab, ac, ad
|q; q

)
(41)

with p0 = 1, x = y + y−1 and 0 < q < 1. Then there is a basic representation of the AW
algebra [17, 21]:

[A,A2A∗ − (q + q−1)AA∗A + A∗A2 + abcdq−1(q − q−1)2A∗] = 0
[A∗, A∗2A − (q + q−1)A∗AA∗ + AA∗2 + (q − q−1)2A] = 0

in the space of symmetric Laurent polynomials f [y] = f [y−1] with a basis (p0, p1, . . .) as
follows:

Af [y] = (y + y−1)f [y], A∗f [y] = Df [y], (42)

where D is the second-order q-difference operator [24] having the Askey–Wilson polynomials
pn as eigenfunctions. It is a linear transformation given by

Df [y] = (1 + abcdq−1)f [y] +
(1 − ay)(1 − by)(1 − cy)(1 − dy)

(1 − y2)(1 − qy2)
(f [qy] − f [y])

+
(a − y)(b − y)(c − y)(d − y)

(1 − y2)(q − y2)
(f [q−1y] − f [y]) (43)

with D(1) = 1 + abcdq−1. The eigenvalue equation for the joint eigenfunctions pn reads

Dpn = λ∗
npn, λ∗

n = q−n + abcdqn−1, (44)

and the operator A∗ is represented by an infinite-dimensional matrix diag (λ∗
0, λ

∗
1, λ

∗
2, . . .). The

operator Apn = xpn is represented by a tridiagonal matrix. Let A denote the matrix whose
matrix elements enter the three-term recurrence relation for the Askey–Wilson polynomials:

xpn = bnpn+1 + anpn + cnpn−1, p−1 = 0 (45)

A =

⎛
⎜⎜⎝

a0 c1

b0 a1 c2

b1 a2 ·
· ·

⎞
⎟⎟⎠ . (46)

7
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The explicit form of the matrix elements of A reads

an = a + a−1 − bn − cn (47)

bn = (1 − abqn)(1 − acqn)(1 − adqn)(1 − abcdqn−1)

a(1 − abcdq2n−1)(1 − abcdq2n)
(48)

cn = a(1 − qn)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)

(1 − abcdq2n−2)(1 − abcdq2n−1)
. (49)

The basis is orthogonal with the orthogonality condition for the Askey–Wilson polynomials
[24] Pn = a−n(ab, ac, ad; q)npn:∫ 1

−1

w(x)

2π
√

1 − x2
Pm(x; a, b, c, d|q)Pn(x; a, b, c, d|q) dx = hnδmn, (50)

where

w(x) = h(x, 1)h(x,−1)h(x, q1/2)h(x,−q1/2)

h(x, a)h(x, b)h(x, c)h(x, d)
, h(x, µ) =

∞∏
k=0

[1 − 2µxqk + µ2q2k]

and

hn = (abcdqn−1; q)n(abcdq2n; q)∞
(qn+1, abqn, acqn, adqn, bcqn, bdqn, cdqn; q)∞

. (51)

As noted in the previous section, a tridiagonal pair of operators A,A∗ is determined up to
the affine transformation. One can appropriately rescale the operators to obtain the algebraic
relations in the form

[A,A2A∗ − βAA∗A + A∗A2 − (q − q−1)2A∗] = 0

[A∗, A∗2A − βA∗AA∗ + AA∗2 − (q − q−1)2A] = 0,
(52)

which results in the corresponding rescaling of the matrix elements. A shift of the operators
has no other effect but shifting the diagonal elements of the representing matrices.

5. Askey–Wilson algebra and reflection equation

We consider models of statistical physics in which the spin variable is associated with the site
i of a one-dimensional lattice. An example of a model with quantum affine symmetry is the
spin-1/2 XXZ model with the Hamiltonian defined on an infinite-dimensional chain:

H = −1

2

∑
i

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + �σz
i σ z

i+1

)
, (53)

where the Pauli matrices σx
i , σ

y

i , σ z
i act on the ith component of the infinite tensor product

. . . ⊗ Vi−1 ⊗ Vi ⊗ Vi+1 ⊗ . . . , with V = C2. This model is known to be integrable [25]
within the representation theory of the affine quantized algebra Uq(ŝl(2)). Namely, given the
Uq(ŝl(2))R-matrix operator R(z1/z2) ∈ EndCVz1 ⊗ Vz2 , where Vz is the two-dimensional
Uq(ŝl(2)) evaluation module, satisfying the Yang–Baxter equation

R12(z1/z2)R13(z1)R23(z2) = R23(z2)R13(z1)R12(z1/z2), (54)

then the Hamiltonian is written as H = ∑
Hii+1, where the two-site Hamiltonian density is

obtained as

Hii+1 = d

du
PRii+1|u=0 (55)

8
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with P as the permutation operator and z1/z2 = eu. The generators act on the quantum space
by means of the infinite coproduct and the invariance with respect to the affine Uq(ŝl(2))

manifests in the property

[H,�∞(Gk)] = 0 (56)

for any of the generators Gk of Uq(ŝl(2)). If we introduce for finite chain a boundary of a
particular form, such as diagonal boundary terms, the symmetry is reduced to Uq(sl(2)) and
the invariant Hamiltonian has the form [26]

H
QGr
XXZ = −1/2

L−1∑
i=1

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + �qσ
z
i σ z

i+1 + h
(
σ z

i+1 − σ z
i

)
+ �q

)
, (57)

where

�q = − 1
2 (q + q−1), h = 1

2 (q − q−1). (58)

In the presence of a boundary in addition to the R-matrix, there is one more matrix K(z) which
satisfies the boundary Yang–Baxter equation, also known as a reflection equation:

R(z1/z2)(K(z1) ⊗ I )R(z1z2)(I ⊗ K(z2)) − (I ⊗ K(z2))R(z1z2)(K(z1) ⊗ I )R(z1/z2) = 0.

(59)

Within the quantum inverse scattering method, the K-matrix is related to the quantum current
L = L+(L−)−1 (10) where L± ∈ EndV ⊗ Uq(ŝl(2)). In section 2, the two generators of
the Askey–Wilson algebra were constructed as linear covariant objects with the coproduct
properties of two-sided coideals of the quantum affine symmetry Uq(ŝl(2)). It is suggestive
to construct the K-matrix in terms of the AW algebra generators.

Let R(z) be the symmetric trigonometric R-matrix with the deformation parameter q1/2:

R(z) =

⎛
⎜⎜⎝

q1/2z − q−1/2z−1 0 0 0
0 z − z−1 q1/2 − q−1/2 0
0 q1/2 − q−1/2 z − z−1 0
0 0 0 q1/2z − q−1/2z−1

⎞
⎟⎟⎠ , (60)

acting on the auxiliary tensor product space Vz1 ⊗ Vz2 which carry the fundamental
representations of the covariance algebra. Then one can construct an operator L(z) [1] in
terms of the Uq(sl(2)) generators:

L(z) =
(

zqJ3 − z−1q−J3 (q1/2 − q−1/2)J−
(q1/2 − q−1/2)J+ zq−J3 − z−1qJ3

)
, (61)

acting on the tensor product V0 ⊗ VQ of the auxiliary space V0 and the quantum space VQ

which in the general case carry finite-dimensional inequivalent Uq(sl(2)) representations. The
L-operator satisfies

R(z1/z2)L1(z1)L2(z2) = L2(z2)L1(z1)R(z1/z2), (62)

where L1 = L ⊗ I and L2 = I ⊗ L. As is known, this relation together with the reflection
equation (59) constitute the basic algebraic relations of the inverse scattering method to
integrable models.

We are now going to construct a solution to equation (59) in terms of the operators A,A∗.

Proposition 3. Let A,A∗ generate the AW algebra, the linear covariance algebra for
Uq(sl(2)). Then there exists a reflection matrix K(z) = Kop(z) + Kc(z), constructed in
terms of the AW algebra generators, where the part Kop has the form

Kop(z) =
⎛
⎝ q1/2zA − q−1/2z−1

√
ρ√
ρ∗ A

∗ −
√

ρ√
ρ∗ (q

1/2 − q−1/2)[A∗, A]q

−ρ−1
√

ρ√
ρ∗ (q

1/2 − q−1/2)[A,A∗]q −q−1/2z−1A + q1/2z
√

ρ√
ρ∗ A

∗

⎞
⎠ (63)

9
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and the part Kc(z) is

Kc
11 = q1/2zη∗ − q−1/2z−1η

ρ(q1/2 + q−1/2)
, Kc

22 = q−1/2zη − q1/2z−1η∗

ρ(q1/2 + q−1/2)

Kc
12 = −ρ

q1/2z2 + q−1/2z−2

q1/2 + q−1/2
−

√
ρ√
ρ∗ ω, Kc

21 = −q1/2z2 + q−1/2z−2

q1/2 + q−1/2
− ρ−1

√
ρ√
ρ∗ ω.

(64)

The matrix K(z) is a solution of the boundary Yang–Baxter equation (59) provided the
operators A,A∗ obey the tridiagonal algebraic relations of the AW algebra in the reduced
general form (30) with all structure constants ρ, ρ∗, ω, η, η∗ nonzero. We denote this solution
K(z, ρ).

The proof of this proposition is rather long but straightforward. It is directly verified using
the explicit form of the R-matrix (60) and the AW algebraic relations (30) that the boundary
matrix K from (63), (64) solves the reflection equation (59).

We emphasize on the factor
√

ρ√
ρ∗ to A∗ and ω in the K-matrix. This factor is due to the

fact that the solution of the boundary Yang–Baxter equation (59) in terms of the AW algebra
generators requires ρ = ρ∗. This is not a problem since given the AW algebra in the general
form (30), we can relate it to an algebra with ρ = ρ∗ rescaling A∗ →

√
ρ√
ρ∗ A

∗. Alternatively,

we can rescale A →
√

ρ∗√
ρ

A to obtain an AW algebra with ρ = ρ∗. This gives a second solution
K(z, ρ∗) of the reflection equation. Its Kop(z, ρ∗) part has the form

Kop(z) =
⎛
⎝ q1/2z

√
ρ∗√
ρ

A − q−1/2z−1A∗ −
√

ρ∗√
ρ

(q1/2 − q−1/2)[A∗, A]q

−ρ∗−1
√

ρ∗√
ρ

(q1/2 − q−1/2)[A,A∗]q − q−1/2z−1
√

ρ∗√
ρ

A + q1/2zA∗

⎞
⎠ . (65)

The matrix elements of the Kc(z, ρ∗) part are obtained from (64) by the interchange ρ ↔ ρ∗.
The solution K(z, ρ∗) can be implemented to construct a solution K∗(z) of the dual reflection
equation [7, 27] Namely, the matrix K∗(z) = Kt(z−1, ρ∗) solves the dual reflection equation
(which is obtained from equation (59) by changing z1,2 → q−1/2z−1

1,2 and K → Kt ).
Setting ρ = ρ∗ and η = η∗ = 0 in (63) and (64), we obtain the K-matrix considered

in [28] for such a very particular case of an AW algebra and for the spin-1/2 quantum space
representation. We note that an AW algebra in the general form with a sequence of scalars
−(q + q−1), γ, γ ∗, ω, η, η∗ cannot be reduced to such a particular algebra with structure
constants −(q + q−1), ρ, ρ, 0, 0, ω, 0, 0. There exists an unique affine transformation [29] to
only set γ = γ ∗ = 0 (and simultaneously either ρ = η∗ = 0 or η = ρ∗ = 0).

6. A model of nonequilibrium physics with the boundary Askey–Wilson algebra

Reaction–diffusion processes provide a playground to increase the utility of quantum groups
[30]. As a physical example we consider the asymmetric simple exclusion process (ASEP),
a model of nonequilibrium physics with rich behaviour and a wide range of applicability
[31–34].

The asymmetric exclusion process is an exactly solvable model of a lattice diffusion
system of particles interacting with a hard core exclusion, i.e. the lattice site can be either
empty or occupied by a particle. As a stochastic process, it is described in terms of a
probability distribution P(si, t) of a stochastic variable si = 0, 1 at a site i = 1, 2, . . . , L of
a linear chain. A state on the lattice at a time t is determined by the occupation numbers si

and a transition to another configuration s ′
i during an infinitesimal time step dt is given by

the probability �(s, s ′) dt . Due to probability conservation, �(s, s) = −∑
s ′ �=s �(s ′, s). The

10
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rates � ≡ �ik
jl , i, j, k, l = 0, 1, are assumed to be independent of the position in the bulk. For

diffusion processes, the transition rate matrix simply becomes �ik
ki = gik . At the boundaries,

i.e. sites 1 and L additional processes can take place with rates L
j

i and R
j

i (i, j = 0, 1). In
the set of occupation numbers (s1, s2, . . . , sL) specifying a configuration of the system si = 0
if a site i is empty, si = 1 if there is a particle at a site i. Particles hop to the left with
probability g01 dt and to the right with probability g10 dt . The event of exchange happens
if out of two adjacent sites, one is a vacancy and the other is occupied by a particle. The
symmetric simple exclusion process is known as the lattice gas model of particles hopping
between nearest-neighbour sites with a constant rate g01 = g10 = g. The partially asymmetric
simple exclusion process with hopping in a preferred direction is the driven diffusive lattice
gas of particles moving under the action of an external field. The process is totally asymmetric
if all jumps occur in one direction only and partially asymmetric if there is a different nonzero
probability of both left and right hopping. The number of particles in the bulk is conserved
and this is the case of periodic boundary conditions. In the case of open systems, the lattice
gas is coupled to external reservoirs of particles of fixed density. Phase transitions inducing
boundary processes [35] are the most interesting examples (see [36] for a review) when a
particle is added with probability αdt and/or removed with probability γ dt at the left end of
the chain, and it is removed with probability βdt and/or added with probability δdt at the right
end of the chain. Without loss of generality, we can choose the right probability rate g10 = 1
and the left probability rate g01 = q.

The time evolution of the model is governed by the master equation for the probability
distribution of the stochastic system

dP(s, t)

dt
=

∑
s ′

�(s, s ′)P (s ′, t). (66)

It can be mapped to a Schroedinger equation in imaginary time for a quantum Hamiltonian
with nearest-neighbour interaction in the bulk and single-site boundary terms

dP(t)

dt
= −HP(t), (67)

where H = ∑
j Hj,j+1 + H(L) + H(R). The ground state of this, in general non-Hermitian,

Hamiltonian corresponds to the stationary probability distribution of the stochastic dynamics.
The mapping provides a connection to the integrable SUq(2)-symmetric XXZ quantum spin

chain with anisotropy � = (q+q−1)

2 , q = g01

g10
�= 1 and most general boundary terms.

We consider the model within the matrix-product-state ansatz of stochastic dynamics
[36, 37], which was inspired by the inverse scattering method to integrable models. The idea
is that one associates with an occupation number si at a position i a matrix Dsi

= D1 if a site
i = 1, 2, . . . , L is occupied and Dsi

= D0 if a site i is empty and the stationary probability
distribution is expressed as a product of (or a trace over) matrices that form a representation
of a quadratic algebra

D1D0 − qD0D1 = x0D1 − D0x1, x0 + x1 = 0, (68)

where 0 < q < 1 and x0, x1 are representation-dependent parameters. The totally asymmetric
process corresponds to q = 0 and the symmetric process to q = 1. The quadratic algebra
with no x-terms on the RHS (i.e. D1D0 − qD0D1 = 0) corresponds to a bulk process with
reflecting boundaries.

For an open system with boundary processes, the normalized steady weight of a given
configuration is expressed as a matrix element in an auxiliary vector space

P(s1, . . . .sL) = 〈w|Ds1Ds2 . . . DsL
|v〉

ZL

, (69)

11
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with respect to the vectors |v〉 and 〈w|, defined by the boundary conditions

(βD1 − δD0)|v〉 = x0|v〉 〈w|(αD0 − γD1) = 〈w|(−x1). (70)

The normalization factor to the stationary probability distribution is

ZL = 〈w|(D0 + D1)
L|v〉. (71)

In the following, we set x1 = −x0.
The advantage of the matrix-product ansatz is that once the representation of the diffusion

algebra and the boundary vectors |v〉 and 〈w| are known, one can evaluate all the relevant
physical quantities such as the mean density at a site i, 〈si〉 = 〈w|(D0+D1)

i−1D1(D0+D1)
L−i |v〉

ZL
,

the two-point correlation function 〈sisj 〉 = 〈w|(D0+D1)
i−1D1(D0+D1)

j−i−1D1(D0+D1)
L−j |v〉

ZL
and higher

correlation functions. The current J through a bond between site i and site i + 1, J =
〈w|(D0+D1)

i−1(D1D0−qD0D1)(D0+D1)
L−i−1|v〉

ZL
, has a very simple form J = x0

ZL−1

ZL
. The matrix D0 +D1

enters all the expressions and plays the role of a transfer matrix operator.
The algebraic matrix state approach (MPA) is the equivalent formulation of recursion

relations derived for the asymmetric exclusion process (ASEP) in earlier works [38, 39], which
could not be readily generalized to other models. In most applications, one uses infinite-
dimensional representations of the quadratic algebra. Finite-dimensional representations
[40, 41] impose a constraint on the model parameters. They may be useful in relation to
Bethe ansatz on a ring [42]. The MPA was generalized to many-species models [36, 43, 44]
and to dynamical MPA [45].

The matrices D0,D1 of the MPA generate an AW algebra with ρ = ρ∗ = 0 [46].
We call this algebra the bulk Askey–Wilson algebra. For the particular case of only
incoming (outgoing) particle at the left (right) end of the chain, the boundary operators
satisfy an isomorphic ρ = ρ∗ = 0 AW algebra which can be solved by shifted q-deformed
oscillators [47–49] as they were applied for the ASEP with such particular boundary conditions
[50, 51]. In the general case of incoming and outgoing particles at both boundaries there are
four operators βD1,−δD0,−γD1, αD0, and one needs an additional rule to form two linear
independent boundary operators acting on the dual boundary vectors. From the quadratic
algebra (68), two independent relations for the boundary operators follow:

βD1αD0 − qαD0βD1 = x0(αβD1 + βαD0) (72)

and

γD1δD0 − qδD0γD1 = x0(δγD1 + γ δD0). (73)

To form two linearly independent operators BR = βD1 − δD0, B
L = −γD1 + αD0 for a

solution to the boundary problem and in order to emphasize the equivalence of the ASEP to the
integrable spin-1/2 XXZ, one can use the Uq(su(2)) algebra. It is generated by three elements
with the defining commutation relations

[N,A±] = ±A±, [A+, A−] = qN − q−N

q1/2 − q−1/2
(74)

and a central element

Q = A+A− − qN−1/2 − q−N+1/2

(q1/2 − q−1/2)2
. (75)

Relations (72), (73) can be solved by choosing a representation of the boundary operators in
the form

12
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βD1 − δD0 = x0β√
1 − q

qN/2A+ − x0δ√
1 − q

A−qN/2 − x0
−βq1/2 + δ

1 − q
qN + x0

β − δ

1 − q
,

αD0 − γD1 = x0α√
1 − q

q−N/2A+ − x0γ√
1 − q

A−q−N/2 + x0
αq−1/2 − γ

1 − q
q−N + x0

α − γ

1 − q
.

(76)

Separating the shift parts from the boundary operators and denoting the corresponding rest
operator parts by A and A∗, we write the left and right boundary operators in the form

βD1 − δD0 = A + x0
β − δ

1 − q
αD0 − γD1 = A∗ + x0

α − γ

1 − q
. (77)

Then the operators A and A∗ defined by

A = βD1 − δD0 − x0
β − δ

1 − q
A∗ = αD0 − γD1 − x0

α − γ

1 − q
(78)

and their q-commutator

[A,A∗]q = q1/2AA∗ − q−1/2A∗A (79)

satisfy the boundary Askey–Wilson algebra of the open ASEP:

[[A,A∗]q, A]q = −ρA∗ − ωA − η

[A∗, [A,A∗]q]q = −ρ∗A − ωA∗ − η∗ (80)

with structure constants given by

ρ = x2
0βδq−1(q1/2 + q−1/2)2, ρ∗ = x2

0αγ q−1(q1/2 + q−1/2)2 (81)

− ω = x2
0(β − δ)(γ − α) − x2

0(βγ + αδ)(q1/2 − q−1/2)Q (82)

η = q1/2(q1/2 + q−1/2)x3
0

(
βδ(γ − α)Q +

(β − δ)(βγ + αδ)

q1/2 − q−1/2

)

η∗ = q1/2(q1/2 + q−1/2)x3
0

(
αγ (β − δ)Q +

(α − γ )(αδ + βγ )

q1/2 − q−1/2

)
.

(83)

One can further use the affine transformation properties of the AW algebra generators to
obtain a representation of the boundary ASEP operators from the basic representation of the
AW algebra. We summarize the results for the representation of the ASEP boundary operators
(for details, see [46]).

There is a representation π in a space with the AW polynomials pn = pn(x; a, b, c, d)

(41) as the basis

(p0, p1, p2, . . .)
t (84)

with respect to which the right boundary operator D1 − δ
β
D0 ≡ D1 + bdD0 is diagonal. The

representing matrix is diag (λ0, λ1, λ2, . . .) with the eigenvalues λn given by

λn = q1/2

1 − q
(bq−n + dqn + 1 + bd). (85)

The left boundary operator D0 − γ

α
D1 ≡ D0 + acD1 is tridiagonal and its representing matrix

has the form

π(D0 + acD1) = q1/2

1 − q
(bAt + 1 + ac), (86)

where the matrix A is given by (46). The dual representation π∗ has a basis

(p0, p1, p2, . . .) (87)

13
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with respect to which the left boundary operator π∗(D0 + acD1) is diagonal diag (λ∗
0, λ

∗
1, . . .)

with diagonal elements

λ∗
n = q1/2

1 − q
(aq−n + cqn + 1 + ac). (88)

The right boundary operator is represented by a tridiagonal matrix

π∗(D1 + bdD0) = q1/2

1 − q
(aA + 1 + bd). (89)

The ASEP boundary value problem is satisfied with the left and right boundary vectors
chosen in the form

〈w| = h
−1/2
0 (p0, 0, 0, . . . .), |v〉 = h

−1/2
0 (p0, 0, 0, . . .)t , (90)

where h0 is a normalization from the orthogonality condition (50). With this choice, the
solutions to the boundary eigenvalue equations uniquely relate (in this representation) the four
parameters of the Askey–Wilson polynomials with the boundary probability rates

a = κ∗
+ , b = κ+, c = κ∗

−, d = κ−, (91)

where

κ± = −(β − δ − (1 − q)) ±
√

(β − δ − (1 − q))2 + 4βδ

2β

κ∗
± = −(α − γ − (1 − q)) ±

√
(α − γ − (1 − q))2 + 4αγ

2α
.

(92)

The expressions on the RHS of equation (92) are the functions of the parameters which define
the phase diagram of the ASEP. They have been used in previously known MPA applications
where they have always been taken for granted. It is quite remarkable that here they follow
from the properties of the Askey–Wilson algebra representations.

It can be further shown that the transfer matrix D0 +D1 and each of the boundary operators
generate isomorphic AW algebras [46]. In the tridiagonal representation, the transfer matrix
D0 +D1 satisfies the three-term recurrence relation of the AW polynomials which was explored
in [52] for the solution of the ASEP in the stationary state. The exact calculation of all the
physical quantities, such as the current, correlation functions, etc, in terms of the Askey–
Wilson polynomials was achieved without any reference to the AW algebra. The ultimate
relation of the exact solution in the stationary state to the AW polynomials was possible due
to the AW boundary hidden symmetry of the ASEP with most general boundary conditions.
The relation of the AW algebra to the K-matrix, determined by (63) and (64), and satisfying
the reflection equation, puts a solution beyond the stationary state into perspective.

7. Interpretation of the ASEP boundary operators

As known the open ASEP is related to the integrable spin-1/2 XXZ quantum spin chain through
the similarity transformation � = −qU−1

µ HXXZUµ [40]. HXXZ is the Hamiltonian of the
Uq(su(2)) invariant quantum spin chain (57) with anisotropy �q and with added nondiagonal
boundary terms B1 and BL:

HXXZ = H
QGr
XXZ + B1 + BL. (93)
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The transition rates of the ASEP are related to the boundary terms in the following way (µ is
a free parameter, irrelevant for the spectrum):

B1 = 1

2q

(
α + γ + (α − γ )σ z

1 − 2αµσ−
1 − 2γµ−1σ +

1

)
BL =

(
β + δ − (β − δ)σ z

L − 2δµqL−1σ−
L − 2βµ−1q−L+1σ +

L

)
2q

.

(94)

It has been shown by Sandow and Schuetz [53] that the bulk-driven diffusive system with
reflecting boundaries can be mapped to the spin-1/2Uq(su(2)) invariant quantum spin chain.
The Uq(su(2)) generators satisfying equations (74) and (75) act on the tensor product
representation space (V 2)⊗L as

q±N = q± σ3
2 ⊗ q± σ3

2 ⊗ . . . ⊗ q± σ3
2

A± =
∑

i

q
σ3
4 ⊗ . . . ⊗ q

σ3
4 ⊗ σ±

i ⊗ q− σ3
4 ⊗ . . . ⊗ q

−σ3
4 ,

(95)

where σ3, σ
± are the Pauli matrices and the index i means that the matrix is associated with

the ith site of the chain (ith position in the tensor product). The representation is completely
reducible; the product of L spin-1/2 representations decomposes into a direct sum of spin
j irreducible representations with the maximal highest weight j = L/2 decreasing by 1 to
j = 0 or j = 1/2 for even L or odd L. Within the matrix product approach, the bulk process
with reflecting boundary conditions is described by a quadratic algebra

D1D0 − qD0D1 = 0, (96)

which defines a two-dimensional noncommutative plane with the SUq(2) action as its
symmetry. The operators associated with the bulk ASEP form the two-dimensional comodule
of SUq(2). As a consequence of equation (96), for generic q, a spin j representation of
Uq(su(2)) can be realized in the space of the q-symmetrized product of L = 2j two-
dimensional representations Dµ,µ = 0, 1, with basis DL−k

0 Dk
1, k = 0, 1, . . . , L. The

stationary probability distribution, i.e. the ground state of the Uq(su(2)) invariant Hamiltonian
H

QGr
XXZ , corresponds to the q-symmetrizer of the Young diagram with one row and L boxes

[54]. The presence of the boundary processes (i.e. the nondiagonal boundary terms in the
Hamiltonian) reduces the Uq(su(2)) bulk invariance and amounts to the appearance of linear
terms in the quadratic algebra. The boundary conditions define the boundary operators which
carry a residual symmetry of the process. It is expressed in the fact that the boundary operators
are constructed in terms of the Uq(su(2)) generators, as seen from the explicit formulae (76).
With A±, N being the generators of a finite-dimensional Uq(su(2)) representation, it can
be verified from equation (76) that αD0 − γD1 commutes with H(q)QGr and βD1 − δD0

commutes with H(−q−1)QGr , where according to [26]

HQGr(−q−1) = −UHQGr(q)U−1 (97)

and

U = exp

(
i
π

2

L∑
m=1

mσ 3
m

)
. (98)

Thus, the boundary operators constructed as the linear covariant objects of the bulk Uq(su(2))

symmetry acquire a very important physical meaning—they can be interpreted as the two
nonlocal conserved charges of the open ASEP. Such nonlocal boundary symmetry charges
were originally obtained for the sine Gordon model [9] and generalized to affine Toda field
theories [10], and derived from spin chain point of view as commuting with the transfer matrix
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for a special choice of the boundary conditions [11]. In particular, the left boundary operator
αD0 − γD1 in the finite-dimensional representation (76) is analogous to the one boundary
Temperley–Lieb algebra centralizer in the ‘nondiagonal’ spin-1/2 representation [12].

8. Discussion and conclusion

In this paper, we have considered the homomorphism of the Askey–Wilson algebra with
two generators into the quantum affine Uq(ŝl(2)) algebra. This homomorphism defines
the Askey–Wilson algebra as a coideal subalgebra of Uq(ŝl(2)). We have constructed an AW
operator-valued K-matrix which is a solution of the boundary Yang–Baxter equation (reflection
equation). We consider the relation of an AW algebra to a solution of the reflection equation
to be important for the exact solvability of a physical system with the quantum Uq(ŝl(2))

invariance in the bulk and hidden boundary Askey–Wilson algebra symmetry.
As an example of a physical system with boundary AW algebra we consider a model

of nonequilibrium physics, the open asymmetric exclusion process with general boundary
conditions. This model is equivalent to the integrable spin-1/2 XXZ chain with nondiagonal
boundary terms whose bulk invariance (infinite spin chain) is Uq( ˆsu(2)). The presence of
boundaries breaks the bulk quantum affine symmetry of the equivalent quantum spin chain;
however, a remnant of the bulk symmetry survives and it is expressed in the possibility of
constructing the ASEP boundary operators in terms of the Uq( ˆsu(2)) generators. Thus the
boundary operators of the open asymmetric exclusion process generate an Askey–Wilson
algebra, which is the hidden boundary symmetry of the process. The exact solution of
the ASEP with most general boundary conditions (four boundary probability rates) in the
stationary state was obtained [52] in terms of the AW polynomials without reference to the
AW algebra. It was emphasized that the solution was ultimately related to the AW polynomials.
Such an ultimate relationship is natural from the point of view of the boundary AW algebra.
The existence of the reflection matrix K(z, ρ) (and its dual Kt(z−1, ρ∗)) constructed in terms
of the AW algebra generators and satisfying the boundary Yang–Baxter equation is, in our
opinion, the deep algebraic property of the open asymmetric exclusion process that may allow
for extending its exact solvability beyond the stationary state.

It is important to emphasize the representation dependence of the Askey–Wilson algebra
(as well as of the MPA bulk quadratic algebra (68)). Constructed as a coideal subalgebra,
it has the property that the structure constants ρ, ρ∗, ω, η, η∗ carry the information of the
corresponding quantum algebra Uq(ŝu(2)). The boundary Askey–Wilson algebra whose
structure constants depend on the finite-dimensional Uq(ŝu(2)) representations is the ASEP
hidden symmetry, and this may have an important consequence in relation to Bethe ansatz
integrability. The Bethe solution of the open ASEP [55] was achieved through the mapping to
the Uq(su(2)) integrable XXZ quantum spin chain with most general nondiagonal boundary
terms, provided a particular constraint on the model parameters was satisfied. Quite
surprisingly, the constraint coincides with the condition for a finite-dimensional representation
of the Askey–Wilson boundary algebra. The suitably chosen representation-dependent
boundary algebra may turn to be the key in relation to Bethe ansatz integrability. For the ASEP
the reduction of the bulk invariance gives rise to the boundary symmetry which remains as the
linear covariance algebra of the bulk Uq(ŝu(2)) symmetry, and one can further employ Bethe
ansatz to obtain exact results for the approach to stationarity at large times and to completely
determine the spectrum of the transfer matrix. As commented in [56], the way one can satisfy
the condition for the Bethe ansatz solution of the ASEP implies additional symmetries. In our
opinion, the linear covariance Askey–Wilson algebra of the bulk Uq(ŝu(2)), whose generators
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are interpreted as the two nonlocal conserved charges of the ASEP, is the hidden symmetry
behind Bethe ansatz solvability.

It is worth mentioning that the relation of the ASEP (or the equivalent quantum spin
chain) boundary algebra to Bethe ansatz integrability is promising from the point of view of
Bethe ansatz perspective in string theory. One is interested in closed strings with periodic
boundary conditions. However, it is simpler to find the scattering matrix on the infinite line
using asymptotic states and bootstrap. Then the spectrum is determined by asymptotic Bethe
equations [57, 58] and they are approximate for a system of a finite size. The study of the
Askey–Wilson algebra of a system on a ring with periodic boundary conditions, which is
interesting on its own, might also be useful for application to strings of finite length.

We have obtained an Askey–Wilson algebra as a coideal subalgebra of the quantum
affine Uq(ŝl(2) and implemented it to find a solution of the reflection equation. We have
related this consideration to a model of nonequilibrium physics where the boundary operators
generate a tridiagonal Askey–Wilson algebra, which is the linear covariance algebra of the
bulk Uq(ŝu(2)) symmetry. It is the hidden symmetry that allows for the exact solvability in
the stationary state and provides the framework for employing Bethe ansatz to determine the
dynamical properties of the open process.
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